LP approximations to mixed-integer polynomial optimization problems
نویسندگان
چکیده
We present a class of linear programming approximations for constrained optimization problems. In the case of mixed-integer polynomial optimization problems, if the intersection graph of the constraints has bounded tree-width our construction yields a class of linear size formulations that attain any desired tolerance. As a result, we obtain an approximation scheme for the “AC-OPF” problem on graphs with bounded tree-width. We also describe a more general construction for pure binary optimization problems where individual constraints are available through a membership oracle; if the intersection graph for the constraints has bounded treewidth our construction is of linear size and exact. This improves on a number of results in the literature, both from the perspective of formulation size and generality.
منابع مشابه
Global optimization of mixed-integer polynomial programming problems: A new method based on Grobner Bases theory
Mixed-integer polynomial programming (MIPP) problems are one class of mixed-integer nonlinear programming (MINLP) problems where objective function and constraints are restricted to the polynomial functions. Although the MINLP problem is NP-hard, in special cases such as MIPP problems, an efficient algorithm can be extended to solve it. In this research, we propose an algorit...
متن کاملLP formulations for mixed-integer polynomial optimization problems
We present a class of linear programming approximations for constrained optimization problems. In the case of mixed-integer polynomial optimization problems, if the intersection graph of the constraints has bounded tree-width our construction yields a class of linear size formulations that attain any desired tolerance. As a result, we obtain an approximation scheme for the “AC-OPF” problem on g...
متن کاملA multi-objective Two-Echelon Capacitated Vehicle Routing Problem for perishable products
This article addresses a general tri-objective two-echelon capacitated vehicle routing problem (2E-CVRP) to minimize the total travel cost, customers waiting times and carbon dioxide emissions simultaneously in distributing perishable products. In distributing perishable products, customers’ satisfaction is very important and is inversely proportional to the customers waiting times. The propose...
متن کاملGlobal optimization of mixed-integer bilevel programming problems
Global optimization of mixed-integer nonlinear bilevel optimization problems is addressed using a novel technique. For problems where integer variables participate in both inner and outer problems, the outer level may involve general mixed-integer nonlinear functions. The inner level may involve functions that are mixed-integer nonlinear in outer variables, linear, polynomial, or multilinear in...
متن کاملSolving Planning and Design Problems in the Process Industry Using Mixed Integer and Global Optimization
This contribution gives an overview on the state-of-the-art and recent advances in mixed integer optimization to solve planning and design problems in the process industry. In some case studies specific aspects are stressed and the typical difficulties of real world problems are addressed. Mixed integer linear optimization is widely used to solve supply chain planning problems. Some of the comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1501.00288 شماره
صفحات -
تاریخ انتشار 2015